MEA and Interfacial Issues in Low Temperature Fuel Cells

Bryan Pivovar

Los Alamos National Laboratory

Interfaces in a Fuel Cell

SEM Pictures Comparing MEA Cross-Section Before/After ~2200 Durability Test

Cryogenic Sectioning with $N_{2(l)}$ Used to Obtain MEA Cross-Sections

• Relatively uniform catalyst layer compositions & thicknesses.

- Significant deterioration of catalyst layer compositions & structures.
- Decrease in thickness uniformity of catalyst layers.

^{*}Wood et. al., 206th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 5th, 2004

Membrane – Electrode Interface

Conductivity, σ , Interfacial Resistance, $R_{interface}$

Membrane	σ (mS/cm)	$R_{interface}$ $(m\Omega cm^2)$
BPSH-30	39	16
BPSH-35	54	30
BPSH-40	78	42
Nafion	111	7

$$HFR = R_{non-mem} + R_{mem}(x)$$

 $R_{non-mem} = R_{elec} + R_{int}$

Influence of Interfacial Compatibility on Longer-Term Performance

Interfacial resistances (m Ω cm²)

0.5 M MeOH/air 80°C

Effect of Methanol Feed Concentration on Cell Resistance during Extended-Term Test

Correlated Factors:

Initial Interfacial Resistance, HFR gain, performance loss

Literature Degradation: Interfacial Failure?

- Membrane resistance was not changed after thermal cycling
- Increased resistance most likely due to interfacial losses

Ref. Cho et. al. *J. Electrochem. Soc.* **150**, A1667 (2003)

Performance degradation after freezing/thawing cycle

✓ OCV was maintained while current density at 0.6 V decreased.

Effects of thermal cycles from 80 to -10° C on the OCV and current density measured at a cell voltage of 0.6 V and at a cell temperature of 80° C.

Fig. 12. Effect of several freeze-thaw cycles on the performance of a single cell with TBA⁺ thin film catalyst layers. Frozen at -10° C. Operation conditions are the same as in Fig. 2. (lacktriangle before freezing, (\triangle) after the 1st freeze, (\bigcirc) after the 2nd freeze, and (\square) after the 3rd freeze.

Electrochem. Acta, Wilson et al., **40**, 355, (1995)

Performance discrepancies

Ref. Cho et. al. *J. Electrochem. Soc.* **150**, A1667 (2003)

Interfacial Resistance between Nafion and Carbon Supported Pt Electrode

• Interfacial resistance between Pt electrode (20% carbon supported) and Nafion membrane was small (1.4 m Ω cm²).

Cell HFR vs. Membrane Thickness

 MEA was fabricated from TBA+ form Nafion solution followed by hot pressing (220 °C).

Performance Change after Freeze/thawing Cycle (Temp. cycle = -5-80°C)

• We observed no performance degradation after 30 freeze/thawing cycle (-5-80°C) with stable OCV and HFR.

Performance Change after Freeze/thawing Cycle (Temp. cycle = -79-80°C)

• We observed the noticeable performance decreased after 7 freeze/thawing cycle (-79-80°C) with increasing HFR.

Summary of Results

	Cho et al.	Wilson et al.	This work	
Membrane	Nafion 115	Nafion 112	Nafion 112	
Electrode	20 wt% Pt/C (0.4 mg/cm ²)	20 wt% Pt/C (0.16 mg/cm ²)	20 wt% Pt/C	(0.2 mg/cm ²)
GDL	wet proofed carbon paper	hydrophobic carbon cloth	hydrophobio	c carbon cloth
MEA processing	Catalyst ink sprayed on GDL / 140°C hot pressing	Decal painting (TBA+ form catalyst) / 200°C hot pressing	Decal painting (TBA+ form catalyst) / 200°C hot pressing	
F/T cycle	-10 – 80°C (4 cycle)	-10 – 80°C (3 cycle)	-5 – 80°C (30 cycle)	-79 – 80°C (7 cycle)
Results	Performance drop, HFR increase, catalyst loss	No performance loss	No performance loss	Performance drop HFR increase

Influence of MEA processing Conditions

Membrane	Nafion 112				
Electrode	20 wt% Pt/C (0.2 mg/cm ²)				
GDL	hydrophobic carbon cloth	hydrophobic carbon cloth	wet proofed carbon paper		
MEA processing	Catalyst ink painted on GDL / 140°C hot pressing	Catalyst ink painted on membrane / 140°C hot pressing	Catalyst ink painted on GDL / 140°C hot pressing		
F/T cycle	-5 - 80°C				
	(~10 cycles)				
Results	Preliminary work suggests little effect from GDL choice and MEA processing				

Effect of Conditions

- Material Concerns
 - MEA (prep, composition)
 - GDL
 - Bipolar/End plates
- Operational
 - Water content
 - Temperature (time)